
Learning Program Representations for Food Images and Cooking Recipes

Dim P. Papadopoulos1,3 Enrique Mora2 Nadiia Chepurko1 Kuan Wei Huang1

Ferda Ofli4 Antonio Torralba1

1 MIT CSAIL 2 Nestle 3 DTU Compute 4 Qatar Computing Research Institute, HBKU
dimp@dtu.dk, enrique.mora@es.nestle.com, {nadiia,kwhuang,torralba}@mit.edu, fofli@hbku.edu.qa

Abstract

In this paper, we are interested in modeling a how-to
instructional procedure, such as a cooking recipe, with a
meaningful and rich high-level representation. Specifically,
we propose to represent cooking recipes and food images
as cooking programs. Programs provide a structured repre-
sentation of the task, capturing cooking semantics and se-
quential relationships of actions in the form of a graph. This
allows them to be easily manipulated by users and executed
by agents. To this end, we build a model that is trained to
learn a joint embedding between recipes and food images
via self-supervision and jointly generate a program from
this embedding as a sequence. To validate our idea, we
crowdsource programs for cooking recipes and show that:
(a) projecting the image-recipe embeddings into programs
leads to better cross-modal retrieval results; (b) generat-
ing programs from images leads to better recognition re-
sults compared to predicting raw cooking instructions; and
(c) we can generate food images by manipulating programs
via optimizing the latent code of a GAN. Code, data, and
models are available online1.

1. Introduction
Food is an important part of our lives. Imagine an AI

agent that can look at a dish and recognize ingredients
and reliably reconstruct the exact recipe of the dish, or
another agent that can read, interpret and execute a cook-
ing recipe to produce our favorite meal. Computer vision
community has long studied image-level food classifica-
tion [4, 10, 21, 26, 27, 34], and only recently focused on un-
derstanding the mapping between recipes and images using
multi-modal representations [14, 30, 48, 49, 67]. However,
retrieval systems are limited to the existing database and
usually fail for queries outside of this database while gener-
ating the full recipe from an image remains a challenge [47].

1http://cookingprograms.csail.mit.edu

h1 = Cook(pasta, tool=pot, time=until al dente)

h2 = Saute(sausage, tool=skillet, temp=medium

heat, time=until light brown, how=breaking

clumps)

h3 = Add(h2, peppers, onions, garlic)

h4 = Saute(h3, time=until tender)

h5 = Add(h4, wine)

h6 = Simmer(h5, time=6 minutes)

h7 = Drain(h1)

h8 = Add(h6, h7)

h9 = Toss(h8, why=to combine)

out = Serve(h9)

return out

h1

h2

h3

h4

h5

h6h7
h8 h9

ServeTossAdd

Cook

Drain

Saute

Add

Saute

Add

Simmer

out

Pasta

Sausage

Onion

Peppers

Garlic

Cooking program and graph

Food image
Linguine with Peppers and Sausage

Ingredients
• (8 ounce) package linguini pasta

• ½ pound sweet Italian sausage

• 2 red bell peppers, chopped

• 1 onion, chopped

• 1 clove garlic, minced

• 1 cup white wine

• ¼ cup grated Parmesan cheese

Instructions
• Cook pasta in a large pot of boiling salted water until al dente.
• While the pasta is cooking, prepare the sauce.
• Sauté sausages in a heavy skillet over medium high heat until light

brown, breaking up clumps with back of spoon.
• Add peppers, onion, and garlic; saute until tender.
• Add wine and simmer until liquid is slightly reduced, about 6

minutes.
• Drain pasta, and add to the skillet.
• Toss to combine.
• Serve.

Cooking recipe

Figure 1. Cooking programs. We learn cooking programs from
food images and recipes. Programs provide a structured represen-
tation of the cooking procedures which can also be represented as
graphs (for brevity, we only show action and ingredient nodes).

Cooking recipes are step-by-step instructional proce-
dures which we propose to represent as programs, captur-
ing all the cooking semantics and relationships. A program
contains a sequence of actions that can be written as func-
tions (e.g., Cook(), Add()). Each action operates on
specific ingredients under certain conditions, such as time
or tool (e.g., Cook(pasta, time=‘10 minutes’,
tool=‘pot’)). A program also captures the sequential
dependency of the actions by maintaining their input-output
connections. Note that even though cooking actions are of-
ten performed sequentially in time, their connections are not
necessarily sequential. The program can also be represented
as a graph where each function and parameter is a node,
while the edges are the function connections or the connec-
tions between the parameters and the actions (Fig. 1).

Our goal is to generate cooking programs conditioned
on food images or cooking recipes. We build a model that
leverages the natural pairing of food images and recipes by

Preheat

Mix Rub Drizzle

Bake

Output graph

Valid program sequences
Preheat()
Mix()
Rub()
Drizzle()
Bake()

Mix()
Preheat()
Rub()
Drizzle()
Bake()

Mix()
Rub()
Preheat()
Drizzle()
Bake()

Mix()
Rub()
Drizzle()
Preheat()
Bake()

Invalid examples
Preheat()
Rub()
Mix()
Drizzle()
Bake()

Mix()
Rub()
Drizzle()
Bake()
Preheat()

Final program
h1= Preheat(tool=oven, temp=425 degrees F)
h2= Mix(oregano, salt, pepper)
h3= Rub(h2, chicken)
h4= Drizzle(h3, olive oil)
out= Bake(h1,h4, time=16 minutes)

Named-entity
Preheat oven to 425F.
Mix oregano, salt and black
pepper and rub it on the
chicken. Drizzle with olive
oil and bake it for 16-18 min

Input Recipe
Preheat oven to 425F.
Mix oregano, salt and black
pepper and rub it on the
chicken. Drizzle with olive
oil and bake it for 16-18 min

Connection

Preheat à Bake
Mix à Rub

Rub à Drizzle
Drizzle à Bake

Taxonomies

black pepper à pepper
salt à salt

425F à 425 degrees F
16-18 min à 16 minutes

Split-and-merge

black + pepper
(1 ingredient)

Drizzle / bake
(2 actions)

Figure 2. Annotation of cooking programs. (Top) We obtain a graph from an input recipe via named-entity, split-and-merge parsing,
taxonomy dictionaries and connection annotation. (Bottom) We obtain all valid program sequences from the graph and the final program.

learning a joint embedding using a vision and a text encoder.
The visual and text embeddings are then used in a program
decoder to generate cooking programs. Our model is trained
end-to-end by jointly optimizing a ranking loss between the
visual and text representations and two losses on the pro-
gram sequence predictions. Because the sequence of some
actions can be permuted without violating the input-output
connections between the functions, we generate the set of
all valid program sequences for each recipe (Fig. 2) and de-
sign a loss that operates on this set. At test time, the model
can not only perform image-to-recipe retrieval tasks but can
also predict the cooking program from an image or a recipe.

To validate our idea, we first crowdsource programs for
cooking recipes selected from the Recipe1M dataset [49]
using carefully designed tasks that can be easily performed
by naive annotators. Experimental results show that our
model leads to better cross-modal retrieval when it is jointly
trained to generate programs. Moreover, generating pro-
grams leads to better food recognition results compared to
predicting the raw cooking instructions. Finally, we show
how to generate food images by manipulating cooking pro-
grams via optimizing the latent code of a GAN.

2. Related Work

Food recognition. Since the Food-101 dataset [4], food
image analysis has become an established problem in com-
puter vision [10,12,21,26,30,34,47,48]. While early work
focused mostly on image-level food categorization [4, 7,
27, 33], recent studies performed more fine-grained anal-
yses such as ingredient recognition [7, 47], nutrition and
calorie estimation [24, 32], food logging [31], and image
generation [15, 38, 66]. Lately, cross-modal analysis of
recipes and food images has become popular, thanks to the
Recipe1M [49], where the authors tackled the image-to-
recipe retrieval problem [30, 49]. Several studies improved
the performance, including ACME [57], R2-GAN [67],
MCEN [14], SCAN [58], among others [5, 8, 13, 42, 48].
However, we aim to go beyond this task and understand

the joint latent space of recipes and images so that we can
generate new recipes from images and vice versa. Along
these lines, [47] presented a two-step approach for predict-
ing recipes from images: they first extract a list of ingredi-
ents given an image, and then, train a decoder that generates
a recipe given both the image and the list of ingredients.
Recipe parsing. The task here is to parse a recipe and seg-
ment it into a sequence of individual actions. To achieve
this, existing studies explored flow graphs [22, 35, 36, 61],
tree-based solutions [6, 16], or extracting knowledge from
cooking videos and transcripts without using the recipe
text [60]. However, the datasets used in these studies are
small (less than 300 recipes) and limited to only verbs and
ingredients [6, 16]. More importantly, the parsing mod-
els require a specific and curated custom format for the
recipes [16, 22]. Instead, we propose a program represen-
tation and describe how we can obtain programs for uncu-
rated recipes [49] using efficient and scalable interfaces.
Program representation. Our work is also related to ap-
proaches that represent activities as programs and learn
them from visual inputs (typically videos) [2,37,43,62,63].
This includes learning actions and objects by watching
cooking videos [62, 63] or a sequence of atomic actions
from instruction videos [2]. In [43], programs for household
activities were used to train model that generate programs
from videos or from natural language descriptions. Pro-
gram generation methods have also been proposed for var-
ious tasks, such as visual question answering [17, 29, 64],
fact verification [9], and geometry problem solving [28].

3. Cooking programs
In this section, we describe our program representation

and show how we design a scalable crowdsourcing protocol
to efficiently annotate recipes and obtain cooking programs.

3.1. Program scheme and graph representation

Cooking recipes consist of a title, a list of ingredients,
and a list of instruction steps. Each step describes a cooking

Next sentence

Named-entity annotation

Linguine with Peppers and Sausages

Cook pasta in a large pot of boiling
salted water until al dente.

Saute sausages in a heavy skillet over
medium high heat until light brown.

Add peppers, onion, and garlic.
Saute until tender.
Drain pasta, and add to the skillet.

Toss to combine.
Serve.

Next recipe

Connection annotation

Figure 3. AMT interfaces. (Named-entity annotation) We ask
the annotators to tag every word of a cooking sentence. (Con-
nection annotation) We ask the annotators to connect two actions
(colored nodes) if there is an in-out relationship between them.

action that operates on ingredients using tools under certain
conditions (e.g., time or temperature). This action results in
an intermediate output that is used as an input in one of the
following steps. This interesting structure, which resembles
to the source code of a program, motivates us to use pro-
grams to represent cooking recipes (Fig. 1).

A program contains a sequence of functions that corre-
spond to cooking actions. Each function takes as input a list
of input variables (ingredients) and parameters (e.g., ingre-
dient quantities or the way the action is performed, such as
using a tool). For example, the sentence “Bake the chicken
in the oven for 10 minutes at 400 degrees F” can be written
as: h = Bake(chicken, tool=oven, time=10
minutes, temp=400 degrees F); The output of
the function is denoted as h. For a full program, we also
capture the input-output connections between the individual
commands. Even though a recipe is performed sequentially
in time, the output of an action is not always used as an in-
put to the next action. Fig. 1 shows an example where the
recipe consists of two sub-recipes that are combined at the
end (i.e, cook pasta and prepare the sauce). These connec-
tions are captured by using the latent variables h as inputs
to the corresponding functions (e.g. Drain(h1)).
Cooking graph. Cooking programs can be also represented
as graphs G = (V, E) (Fig. 1 (right)). Variables and func-
tions are represented as vertices V , while the edges E are
the connections between the functions and their inputs. The
graph shows that the sequence of actions can be permuted

without violating input-output connections (i.e, the edges
E). We can compute all possible permutations that lead to
valid, executable programs, i.e., hi cannot be used as in-
put before being computed. The bottom of Fig. 2 shows all
valid permutations where the function Preheat() can be
executed at any point before baking the chicken. In Sec. 4
we use this set of permutations to train our proposed model.
Program taxonomy. Parsing the recipes creates huge vo-
cabularies for each category of the programs (Recipe1M
contains 230k unique ingredients, 20k actions and 40k
tools). To create a fixed and semantically meaningful vo-
cabulary for each category, we follow a semi-automatic pro-
cedure. We describe here the process for the ingredients
and we follow a similar one for the others: First, we use
Sentence-BERT [45] and extract features for each unique
ingredient. Then, we cluster them with K-Means using a
high number of clusters (2,000) so that each cluster con-
tains only semantically identical ingredients. Finally, for
each cluster, we manually check its nearest neighbor and
merge them if they are semantically almost identical. We
repeat this iteratively until clusters cannot be merged any-
more. Overall, this leads to 514 ingredient, 60 action, 55
tool, 130 quantity, 60 temperature, 152 time, 105 how, 112
why and 220 output clusters.

3.2. Program annotation

Crowdsourcing cooking programs is challenging as most
naive annotators have no programming experience. For this
reason, we split the process into four simple steps: (a)
named-entity annotation, (b) split-and-merge parsing, (c)
connection annotation and (d) program taxonomy (Fig. 2).
Named-entity annotation. In this step, we provide anno-
tators a cooking sentence, and ask them to classify (tag)
every word as one of the following categories: cooking ac-
tion, ingredient, quantity, kitchen tool, temperature, time,
how, why, and output (Fig. 3 (left)). The annotators first
read instructions with the definition of each category and
several examples. To ensure high quality responses, we de-
sign a protocol that follows common quality control mech-
anisms [25, 39, 46, 54, 56, 65] and monitor the performance
of the annotators by using hidden pre-tagged sentences.
Split and merge. In this step, we perform two parsing oper-
ations without any human intervention. First, we split sen-
tences that contain more than one action (e.g., “drizzle with
olive oil and bake it for 16-18 minutes” in Fig. 2) so that
every sentence contains only one action. Next, we merge
tagged words into entities. For example, the phrase “mix
fresh oregano, salt and black pepper” has five ingredient
words but there are only three ingredients. Black pepper
and fresh oregano are merged into the final variables.
Connection annotation. In this step, we provide annotators
a recipe with highlighted actions and a panel with these ac-
tions as nodes (Fig. 3 (right)), and ask them to connect two

Image

Text recipe
(Title, Ingredients, Instructions)

Linguine with Peppers and Sausage
(8 ounce) package linguini pasta
½ pound sweet Italian sausage
…
…
¼ cup grated Parmesan cheese
Cook pasta in a large pot.
Sauté sausages in a heavy skillet
over medium high heat
…
…
Serve.

…
…

Linguine

With

Peppers

…
…

projection of patches
W

ord to vector em
bedding

Positional Encoding
Positional Encoding

Encoder layer

Encoder layer

Encoder layer

…

Encoder layer

Encoder layer

Encoder layer

…
Decoder layer

Decoder layer

Decoder layer

…

Decoder layer

Decoder layer

Decoder layer

…

‘h1’
‘=’

‘Cook’
‘(’

‘Pasta’
‘,’
…
…

‘h1’
‘=’

‘Cook’
‘(’

‘Pasta’
‘,’
…
…

Text Encoder FT

Vision Encoder FV Program Decoder GP

Lpv

Lpt

Lss

Figure 4. Generating cooking programs from food images or cooking recipes. Our model is trained end-to-end to project image and
recipe features from a vision and a text encoder into a common space and to jointly generate programs as a sequence of commands using a
program decoder conditioned on the image and text features.

nodes with an edge if there is an input-output relationship
between them. To ensure high quality, we provide instruc-
tions and follow standard quality control mechanisms.
Program taxonomies. In this step, we follow the variable
taxonomies (Sec. 3.1) and for each category (i.e, actions,
ingredients, tools, etc.) we map all obtained values of each
node into the corresponding categories from our fixed pro-
gram vocabulary (e.g., “black pepper”→“pepper” in Fig. 2).
Final program. Finally, we follow the rules described in
Sec. 3.1 to create the final program and the corresponding
graph. The output of the last action is denoted as out.

3.3. Program collection

We ran experiments on Amazon Mechanical Turk
(AMT) and collected programs for 3,708 recipes selected
from the Recipe1M dataset [49]2. This translates to 42,473
sentences with 478,285 tagged words and 54,154 annotated
edge connections. An annotated example is shown in Fig. 2.
Annotation time and quality. The median response time
of the named-entity task was 17 s per sentence, while the
time of the connection task was 75 s per recipe. The an-
notated recipes have on average 11 sentences leading to a
total annotation time of 4 minutes per recipe. The total cost
for annotating our programs was about $2,000 (hourly wage
about $8). To analyze and quantify the quality of our anno-
tations, we annotate 50 recipes (550 sentences) once more
using different annotators and measure the human agree-
ment. The human agreement of the named-entity task is
97.9% (i.e., words with the same annotation label) . For the
connection task, we found that 7.3% of the connections do

2Human subject experiments were conducted with an IRB approval.

not appear in both annotations (agreement of 92.7%).

4. From food images and recipes to programs
We introduce the novel task to generate cooking pro-

grams from food images or cooking recipes. In Sec. 4.1,
we present the model architecture, while in Sec 4.2, we ex-
plain the training process and the objective functions.

4.1. Model architecture

Given a set of images I paired with their recipes R and
a set of programs P , our goal is to learn how to generate a
cooking program conditioned on an image or a recipe. Our
model consists of three components: (a) a vision encoder,
(b) a text encoder, and (c) a program decoder (Fig. 4). The
model is trained to embed the images and recipes into the
same space via self-supervision and to generate a program
from an image or a recipe embedding.
Vision encoder. Food images are fed into the vision en-
coder FV based on the Vision Transformer (ViT) [11]. The
image is split into fixed-size patches (tokens). After a lin-
ear projection and adding position embedding, these tokens
are fed to a stack of kv Transformer encoder layers [55].
Unlike the original ViT where the image representation is
obtained from the “classification token”, we obtain it from
the features of all patches after average pooling.
Text encoder. The text from cooking recipes is fed into
the text encoder FT [55]. The architecture of FT is similar
to FV with the difference that here the words play the role
of the tokens fed into kt identical Transformer layers [55].
Once more, the final recipe representation is obtained after
an average pooling layer on top of the token embeddings.

Recipe Program Encoder image-to-recipe recipe-to-image
Component Loss Layers medR R@1 R@5 R@10 medR R@1 R@5 R@10

Title 8 (small) 4.6 24.0 54.4 67.8 4.5 23.8 54.2 67.5
Ingredients 8 (small) 2.8 39.1 68.1 80.3 3.0 38.9 68.4 80.5
Instructions 8 (small) 3.1 36.6 65.2 76.8 3.0 36.5 65.8 76.9
Title+Ingr 8 (small) 2.0 43.6 75.6 85.0 2.0 44.9 76.2 85.4

Title+Ingr+Inst 8 (small) 1.0 53.5 81.8 89.2 1.0 53.1 82.0 89.6

Title+Ingr+Inst ✓ 8 (small) 1.0 58.6 85.7 91.7 1.0 58.2 85.5 92.0
Title+Ingr+Inst ✓ 12 (base) 1.0 66.9 90.9 95.1 1.0 66.8 89.8 94.6

State-of-the-art image-to-recipe recipe-to-image
cross-modal retrieval Img Encoder medR R@1 R@5 R@10 medR R@1 R@5 R@10
Salvador CVPR 17 [49] ResNet-50 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0
Chen ACM MM 18 [8] ResNet-50 4.6 25.6 53.7 66.9 4.6 25.7 53.9 67.1
Carvalho SIGIR 18 [5] ResNet-50 2.0 39.8 69.0 77.4 1.0 40.2 68.1 78.7
Zhu CVPR 19 [67] ResNet-50 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3
Fu CVPR 20 [14] ResNet-50 2.0 48.2 75.8 83.6 1.9 48.4 76.1 83.7
Pham AAAI 21 [42] ResNet-50 1.6 49.7 79.3 86.3 1.6 50.1 79.0 86.4
Wang CVPR 19 [57] ResNet-50 1.0 51.8 80.2 87.5 1.0 52.8 80.2 87.6
Wang TMM 21 [58] ResNet-50 1.0 54.0 81.7 88.8 1.0 54.9 81.9 89.0
Fain arXiv 19 [13] ResNeXt-101 1.0 60.2 84.0 89.7 – – – –
Salvador CVPR 21 [48] ResNet-50 1.0 60.0 87.6 92.9 1.0 60.3 87.6 93.2
Salvador CVPR 21 [48] ViT-B/16 1.0 63.2 88.3 93.1 – – – –

Ours ViT-B/16 1.0 66.9 90.9 95.1 1.0 66.8 89.8 94.6

Table 1. Cross-modal retrieval results on Recipe1M. At the top part of the table, we report ablation studies of our model, while at the
bottom part, we compare our results with the state-of-the-art cross-modal retrieval approaches.

Program decoder. The program decoder GP consists of
kp transformer decoder layers [55]. The features obtained
from FV are fed into the multi-head attention of each layer
following the standard attention mechanism [55]. This re-
sults in a predicted program sequence Pv given the image.
We repeat the approach for the text part. As such, the fea-
tures obtained from FT are fed to GP to predict a program
sequence Pt. During inference, a program can be predicted
given either a food image or a recipe using the correspond-
ing features and the same decoder GP (shared weights).

4.2. Training model and loss functions

We train our model end-to-end to jointly learn to project
the image features from FV and the text features from FT

into a common space through a self-supervised loss Lss and
to generate programs matching the ground-truth ones from
the food images Lpv and the cooking recipes Lpt.
Self-supervised triplet loss. We follow prior work and use
a bi-directional max-margin triplet ranking loss to project
images and text descriptions into a joint space [18,19,53,59]
due to its recent success at the image-to-recipe retrieval
task [5, 48, 57, 67]. The loss is based on the triplet rank-
ing loss [51, 52] Lt(a, p, n) = max(0, s(f(a), f(n)) −
s(f(a), f(p)) + m) where a is an anchor input, p and n
are positive and negative samples, s is a similarity function,

Loss ViT image-to-recipe
hyperparameters features R@1 R@5 R@10

λpv = 0.1, λpt = 0.1 average 58.6 85.7 91.7

λpv = 0.1, λpt = 0.1 cls token 56.1 83.8 90.1

λpv = 0, λpt = 0 average 53.5 81.8 89.2
λpv = 1, λpt = 1 average 58.0 85.1 90.9
λpv = 10, λpt = 10 average 56.4 83.7 89.6

Table 2. Ablation study on ViT feature representation and loss
hyperparameters. All models use encoders with 8 layers (small).

f is an embedding and m is a fixed constant margin.
For a mini-batch with size N of image-recipe pairs

{Ii, Ri}Ni=1, we obtain the feature representations of the im-
age Ii and a recipe Rj from the visual FV and text encoder
FT as FV (Ii) and FT (Rj), respectively. The image-recipe
pair is considered as positive when i = j and as negative
otherwise. The final self-supervised bi-directional loss of
the mini-batch, which computes Lt twice, is given by:

Lss =
1

N

N∑
i=1,j ̸=i

max(0, s(i, j)− s(i, i) +m)+

+max(0, s(j, i)− s(i, i) +m) (1)

Image Recipe
Title: lemon blueberry muffins
Ingredients: 2 cups flour, 2/3 cup sugar, 1
teaspoon baking powder, 1 teaspoon baking
soda, 1/2 teaspoon salt, … …
Instructions: Preheat oven to 400f (200c).
grease muffin cups. stir together flour, 2/3 cup
sugar, baking powder, baking soda and salt.
separately mix yoghurt, butter, egg, lemon
zest and vanilla extract until blended. make a
well in the centre of the dry ingredients, add
yoghurt mixture and blueberries and stir to
combine. pour into muffin cups. bake 20-25
minutes. cool for 5 minutes before eating.

GT

Preheat
Grease

Stir

MixMake

Add
Stir

Pour

Bake

Cups

Flour Sugar Salt
Yoghurt
Butter
Egg

Lemon
Vanilla

B.powder
B. soda

Blueberry

Cool

Predicted from Recipe

Preheat
Grease

Stir

Mix

Make
Add
Stir

Pour

Bake

Cups

Flour Sugar Salt

Yoghurt
Butter
Egg

Lemon
Vanilla

B.powder
B. soda

Blueberry

Cool

Predicted from Image

Preheat Bake

Mix

Butter Egg

Add

Vanilla

Add

Sugar
Flour

Salt B.powder

Add Milk

MixBlueberry

Figure 5. Generating programs from food images and recipes. We show the output graphs of the two generated programs conditioned
on the input recipe or the input image. For visualization purposes, we only show action (green) and ingredient (cyan) nodes.

where s(i, j)=s(FV (Ii), FT (Rj)) denotes the cosine simi-
larity between image Ii and a recipe Rj .
Program prediction loss. Each recipe Ri is a sequence of
K sentences (r1, r2, ..., rK). The program Pi is a sequence
of L programming function commands (p1, p2, ..., pL) fol-
lowing the ordering of the recipe instructions (Fig. 1). How-
ever, as described in Sec. 3.1, some of the commands pk can
be permuted without violating the input-output connections
between the functions. We denote as Pi = (P 0

i , P
1
i , ...P

β
i)

the set of all β valid permutations of the sequence Pi. At
each time step, Gp predicts a probability distribution for the
output tokens, which is typically followed by a softmax and
a cross-entropy loss between the predicted and the target se-
quence. Here, we expand the cross-entropy loss to handle a
set of multiple candidate sequences P .

Let ΠI
i = Gp(FV (Ii)) be the generated program condi-

tion on Ii and ΠR
i = Gp(FT (Ri)) be the generated program

condition on Ri. The loss Lpv for a mini-batch is given by:

Lpv =
1

N

N∑
i=1

min
j∈[1,β]

Lce(Π
I
i , P

j
i) (2)

where Lce(Π
I
i , P

j
i) is the cross-entropy loss between Πi

and the jth target program sequence P j
i . Lpt is given by

eq. (2) by replacing ΠI
i with ΠR

i .
Final loss. The full objective function L of our model is
defined as L = λssLss + λpvLpv + λptLpt, where λss, λpv ,
λpt are hyperparameters that control the relative importance
of the image-recipe loss to the program prediction losses.

5. Experimental results
This section presents our experimental results. We eval-

uate our approach on three tasks: image-to-recipe retrieval
(Sec. 5.1), program generation from recipes and images
(Sec. 5.2), and image generation from programs (Sec. 5.3).
Data. We use the Recipe1M3 dataset [49] as standard in
previous work [13,14,48,49,57,58,67]. Recipe1M contains
887,706 food images and 1,029,720 cooking recipes split in
training (70%), validation (15%) and test (15%) sets. Note

3obtained from http://im2recipe.csail.mit.edu/

Input: Food images
Ingredients Actions Tools Full graph∗

(F1 ↑) (F1 ↑) (F1 ↑) (GED ↓)

Random image 12.6 14.6 14.2 102.1
Retrieved image 39.4 51.6 66.9 79.1
NN (oracle) 53.5 66.5 81.1 62.2
Instructions 28.5 38.3 50.5 –
Programs (CE) 52.8 64.5 78.1 72.1
Programs (minCE) 53.5 64.7 78.1 67.2

Input: Cooking recipes
Ingredients Actions Tools Full graph∗

(F1 ↑) (F1 ↑) (F1 ↑) (GED ↓)

Random recipe 12.4 14.5 14.2 101.5
Retrieved recipe 43.4 55.2 74.2 67.1
NN (oracle) 53.5 66.5 81.1 57.2
Instructions 41.6 49.3 66.6 –
Programs (CE) 75.4 83.1 83.8 19.1
Programs (minCE) 75.5 83.1 84.1 16.8

Table 3. Evaluation of the predicted programs from images
(top) and from recipes (bottom). For the full program, we re-
port the graph edit distance (GED) between the ground-truth and
the predicted graphs. We also extract the ingredients, actions and
tools from the programs and report the F1 score with respect to
the ground truth. ∗Note that due to the high computational cost of
graph matching, GED is computed only on 5% of the test set.

that we use only the recipes that have corresponding images
(340,831 recipes). For the cooking programs, we use our
ground-truth dataset with 3,708 programs.
Implementation details. Unless stated otherwise, we use
the following settings. FV is based on ViT-B/16 [11]
(kv=12 layers, 12 heads) originally pretrained on Ima-
geNet [46]. FT and GP are based on [55]. We use kt=8
encoder layers (8 heads) and 2 decoder layers (4 heads).
To handle the imbalance between the image-recipe and the
recipe-program pairs, we first pre-train FT and GP alone
using our annotated recipe-program pairs and obtain pseudo
ground-truth programs for the whole Recipe1M. The im-
ages are resized to 256×256 and then cropped to 224×224.
During training we perform random crop and horizontal flip
augmentation. We train our model for 50 epochs using the
Adam optimizer [23] with a base learning rate of 10−4 and

G
T

Pr
ed
ic
te
d

chocolate
milk
sugar
cream cheese
whipped topping
graham cracker

chocolate
milk
sugar
cream cheese
whipped toping
graham cracker
pudding mix

olive oil
squash
radish
salt
pepper
pasta
parmesan cheese

olive oil
sauce
onion
salt
pasta
pepper
parmesan cheese

tuna
celery
mayonnaise
cheddar cheese
tortilla
lettuce

tuna
egg
celery
mayonnaise
chili
tortilla
lettuce

sugar
milk
salt
vanilla extract
egg

sugar
milk
salt
vanilla extract
egg
strawberry

Figure 6. Ingredient prediction from images. We show qualita-
tive results for the ingredients extracted from generated programs
(Pv). The ingredients highlighted in red are either FP or FN.

a step decay of 0.1 every 20 epochs. We set λss = 1,
λpv = 0.1, λpt = 0.1 and m = 0.3. All experiments were
run on four Nvidia Titan X GPUs.

5.1. Image-to-recipe retrieval

Evaluation. Following the protocol of Recipe1M [49], we
measure the retrieval performance on the test set with me-
dian rank (medR) and recall at top K (R@K) for K =
1, 5, 10 on ranking of 1,000 recipe-image pairs. We report
the average metrics after repeating experiments 10 times.
Recipe components. We first examine the effect of training
and testing the model using different recipe components. In
the first three rows of Tab. 1, we observe that the ingredient
list is the most informative component (R@1=39.1). Com-
bining it with the title gives a small boost in performance
(+4.5 in R@1), while using the full recipe yields 53.5.
Predicting programs. The first five models were trained
without the decoder GP . We observe that training the model
using GP to predict programs from the common embedding
space significantly improves the performance (+4.9 R@1).
Deeper encoders. When using deeper encoders (Base
model with 12 layers), the R@1 accuracy jumps to 66.9.
Comparison with state of the art. In Tab. 1(bottom), we
compare our final model against several approaches. We
achieve state-of-the-art performance thanks to the power-
ful transformer encoders and our program prediction loss.
Note that a fair comparison among all methods is hard since
they all use different image (ResNet, ResNext, ViT) and text
(LSTMs, transformers) encoders. Also, note that previous
work [48] use multiple transformer encoders for each com-
ponent of the recipe. Instead, we use only a single text en-
coder (Fig. 4) leading to a much simpler and efficient model.
Also, we do not use any unpaired data from Recipe1M un-
like most of the existing approaches [5, 13, 48, 49, 57, 67].
ViT features. Using features from the “cls token” as in the

Figure 7. Attention. We use Attention Rollout [1] to visualize the
attention weights on images and on recipe titles.

original ViT [11] (instead of average pooling) causes a drop
in performance (-2.5 in R@1), as shown in Tab. 2(top).
Loss hyperparameters. In Tab. 2, we perform an ablation
study for λpv and λpt showing a small performance drop
(-0.6% with λpv = 1 and -2.2% with λpv = 10 in R@1).

5.2. Program prediction from images and recipes

We evaluate here our model on the task of predicting pro-
grams from images or recipes (Fig. 5, Tab. 3).
Evaluation. Instead of considering the program as a se-
quence and use standard sequence evaluation metrics [40],
we turn the programs into graphs and measure the graph
edit distance (GED) [50] wrt to the groundtruth one. GED
captures not only the semantic nodes but also their ordering
and topology. This evaluation is feasible due to our fixed
program vocabulary. Moreover, we extract only the ingre-
dient nodes of the graphs and measure accuracy with the F1
score between the predicted and the ground-truth sets. We
follow the same strategy for the action and tool nodes.
Programs from images. In Tab. 3(top), we report our
results for predicting programs from images and compare
with several baselines: (a) Random image: program from a
random image; (b) Retrieved image: program from the top
retrieved image using our retrieval system; (c) NN (oracle):
oracle nearest neighbor (NN) program (e) Instructions: our
model where we decode the instruction text instead of a pro-
gram. Tab. 3(top) shows that generating programs leads to
better results (better ingredient, action and tool prediction)
than the strong baselines of decoding sentences or relying
on a retrieval system for making predictions. Interestingly,
our model is only slightly below the oracle baseline that
simulates an ideal retrieval system. We also observe that
our program loss (minCE) slightly improves results over the
standard CE loss. Fig. 6 show qualitative results for the in-
gredient prediction on food images, while Fig. 5 shows a

Latent code z

Fv

Program Loss

GP

StyleGAN

Generated image Input cooking program

Preheat Grill Place
Top Serve

Chicken

Heat Add Season Cook

Oil Peppers Onions

Oregano

Garlic

red + greengreen only

Heat

red + greengreen only

Add

Steak

Cook Remove Cut

Combine
Oil

Lemon

Mustard

Top

LemonVinegar

Stir Add

Greens

Toss

Real image Generated image Real image Generated image Real image Generated image Real image Generated image

(a) (b)

(c)

Four-Cheese Macaroni and Cheese Crunchy Ramen Taco Salad Homemade tomato soup Chickpea Tikka Masala

Figure 8. Generating food images from programs. (a) We optimize the latent code of a GAN by computing a loss between the input
program and the predicted one from a generated image. (b) Generating images by manipulating programs. The images on the left of the
graphs are generated using only the green nodes, while images on the right are obtained from the full graph. (c) Examples of generated
images from ground-truth programs and comparison with the real images.

predicted program from a recipe and an image.
Programs from recipes. Similarly, in Tab. 3(bottom), we
report our results for predicting programs from recipes and
repeat the above baselines. The text classifier here is a
transformer-based multi-label classifier that predicts ingre-
dients. As expected, predicting programs from recipes is a
much simpler task than predicting them from images. Once
more, we observe similar trends and our loss yields slightly
better results than the standard CE and significantly better
than the Instructions baseline (+33.9% F1 for ingredients).
Attention. To further understand how FV and FT process
images and text, we visualize their attention weights fol-
lowing [1]. In Fig. 7 we observe that both encoders focus
on semantically similar concepts across the two domains.

5.3. Image generation

We show an interesting application of image generation
conditioned on cooking programs using our model. We first
train a StyleGANv2 [20] on the images of the Recipe1M
dataset [49]. Given an initial latent vector z0, we use the
GAN to generate an image. The image goes through the
encoder FV and the decoder GP to obtain a program. We
compute the loss between this program and the desired in-
put one. We use the loss to optimize z via backpropaga-
tion. Similar approaches have been proposed using the re-
cently introduced CLIP [44] model to drive image genera-
tion using text sentences [3, 41]. Fig. 8(left) illustrates our
approach while in Fig. 8(right) we show examples of gener-
ated images using a full program or a part of it (green nodes

only). We observe that the generated images are realistic
and capture plausibly the content of the input program.

6. Conclusions

We proposed to model cooking recipes with cooking pro-
grams. We designed a program scheme and annotated a set
of programs for cooking recipes and we presented an ap-
proach for learning to predict programs from food images
and recipes. Experimental results showed that projecting
the common space between images and recipes into pro-
grams can improve retrieval results. Finally, we showed
how we can generate food images by manipulating a pro-
gram. We hope that programs will open new directions such
as allowing agents to execute recipes or allowing us to ex-
tract common-sense knowledge for food from graphs.
Limitations and societal impact. In this work, we do not
go beyond predicting the cooking procedure via programs.
However, predicting nutritional value, estimating calories
and their impact in our health is an important topic. More-
over, inaccurate predicted programs might not be able to be
executed or lead to inedible food. Also, ingredient predic-
tion models should be applied consciously especially in user
cases with food allergies. Future work involves an analysis
on the potential biases that the programs or our training data
might have (e.g. towards unhealthy food dishes, towards
western world with underrepresented cuisines) and the im-
pact that this might have on the food industry.
Acknowledgments. This work is supported by Nestlé.

References
[1] Samira Abnar and Willem Zuidema. Quantifying attention

flow in transformers. In ACL, 2020. 7, 8
[2] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal,

Josef Sivic, Ivan Laptev, and Simon Lacoste-Julien. Unsu-
pervised learning from narrated instruction videos. In CVPR,
pages 4575–4583, 2016. 2

[3] David Bau, Alex Andonian, Audrey Cui, YeonHwan Park,
Ali Jahanian, Aude Oliva, and Antonio Torralba. Paint by
word. arXiv preprint arXiv:2103.10951, 2021. 8

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In ECCV, 2014. 1, 2

[5] Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier,
Nicolas Thome, and Matthieu Cord. Cross-modal retrieval in
the cooking context: Learning semantic text-image embed-
dings. In SIGIR, 2018. 2, 5, 7

[6] Minsuk Chang, Léonore V Guillain, Hyeungshik Jung,
Vivian M Hare, Juho Kim, and Maneesh Agrawala.
Recipescape: An interactive tool for analyzing cooking in-
structions at scale. In CHI, pages 1–12, 2018. 2

[7] Jingjing Chen and Chong-Wah Ngo. Deep-based ingredi-
ent recognition for cooking recipe retrieval. In Proceedings
of the 24th ACM international conference on Multimedia,
pages 32–41, 2016. 2

[8] Jing-Jing Chen, Chong-Wah Ngo, Fu-Li Feng, and Tat-Seng
Chua. Deep understanding of cooking procedure for cross-
modal recipe retrieval. In Proceedings of the 26th ACM in-
ternational conference on Multimedia, 2018. 2, 5

[9] Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang,
Hong Wang, Shiyang Li, Xiyou Zhou, and William Yang
Wang. TabFact: A large-scale dataset for table-based fact
verification. In ICLR, 2020. 2

[10] Xin Chen, Yu Zhu, Hua Zhou, Liang Diao, and Dongyan
Wang. Chinesefoodnet: A large-scale image dataset for chi-
nese food recognition. arXiv preprint arXiv:1705.02743,
2017. 1, 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 4, 6, 7

[12] Martin Engilberge, Louis Chevallier, Patrick Pérez, and
Matthieu Cord. Finding beans in burgers: Deep semantic-
visual embedding with localization. In CVPR, pages 3984–
3993, 2018. 2

[13] Mikhail Fain, Andrey Ponikar, Ryan Fox, and Danushka
Bollegala. Dividing and conquering cross-modal recipe re-
trieval: from nearest neighbours baselines to sota. arXiv
preprint arXiv:1911.12763, 2019. 2, 5, 6, 7

[14] Han Fu, Rui Wu, Chenghao Liu, and Jianling Sun. Mcen:
Bridging cross-modal gap between cooking recipes and dish
images with latent variable model. In CVPR, 2020. 1, 2, 5, 6

[15] Fangda Han, Ricardo Guerrero, and Vladimir Pavlovic.
Cookgan: Meal image synthesis from ingredients. In WACV,
2020. 2

[16] Jermsak Jermsurawong and Nizar Habash. Predicting the
structure of cooking recipes. In EMNLP, pages 781–786,
2015. 2

[17] Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Judy Hoffman, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Inferring and executing programs for
visual reasoning. In ICCV, 2017. 2

[18] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, 2015. 5

[19] Andrej Karpathy, Armand Joulin, and Li Fei-Fei. Deep frag-
ment embeddings for bidirectional image sentence mapping.
In NeurIPS, 2014. 5

[20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 8

[21] Parneet Kaur, Karan Sikka, Weijun Wang, Serge Belongie,
and Ajay Divakaran. Foodx-251: a dataset for fine-grained
food classification. arXiv preprint arXiv:1907.06167, 2019.
1, 2

[22] Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettle-
moyer, and Yejin Choi. Mise en place: Unsupervised inter-
pretation of instructional recipes. In EMNLP, pages 982–
992, 2015. 2

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[24] Mandy Korpusik and James Glass. Spoken language under-
standing for a nutrition dialogue system. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 2017.
2

[25] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Tom Duerig, et al. The open im-
ages dataset v4: Unified image classification, object detec-
tion, and visual relationship detection at scale. arXiv preprint
arXiv:1811.00982, 2018. 3

[26] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun
Yang. Cleannet: Transfer learning for scalable image clas-
sifier training with label noise. In CVPR, pages 5447–5456,
2018. 1, 2

[27] Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod
Vokkarane, and Yunsheng Ma. Deepfood: Deep learning-
based food image recognition for computer-aided dietary as-
sessment. In International Conference on Smart Homes and
Health Telematics, 2016. 1, 2

[28] Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang,
Xiaodan Liang, and Song-Chun Zhu. Inter-GPS: Inter-
pretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning. In ACL, 2021. 2

[29] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from nat-
ural supervision. In ICLR, 2019. 2

[30] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and Antonio
Torralba. Recipe1m+: A dataset for learning cross-modal
embeddings for cooking recipes and food images. IEEE
transactions on pattern analysis and machine intelligence,
43(1):187–203, 2019. 1, 2

[31] Michele Merler, Hui Wu, Rosario Uceda-Sosa, Quoc-Bao
Nguyen, and John R Smith. Snap, eat, repeat: a food recog-
nition engine for dietary logging. In Proceedings of the 2nd
international workshop on multimedia assisted dietary man-
agement, 2016. 2

[32] Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korat-
tikara, Alex Gorban, Nathan Silberman, Sergio Guadarrama,
George Papandreou, Jonathan Huang, and Kevin P Murphy.
Im2calories: towards an automated mobile vision food diary.
In ICCV, 2015. 2

[33] Weiqing Min, Shuqiang Jiang, Shuhui Wang, Jitao Sang, and
Shuhuan Mei. A delicious recipe analysis framework for ex-
ploring multi-modal recipes with various attributes. In Pro-
ceedings of the 25th ACM international conference on Mul-
timedia, pages 402–410, 2017. 2

[34] Weiqing Min, Linhu Liu, Zhiling Wang, Zhengdong Luo,
Xiaoming Wei, Xiaolin Wei, and Shuqiang Jiang. Isia food-
500: A dataset for large-scale food recognition via stacked
global-local attention network. In Proceedings of the 28th
ACM International Conference on Multimedia, 2020. 1, 2

[35] Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and Tet-
suro Sasada. Flow graph corpus from recipe texts. In LREC,
pages 2370–2377, 2014. 2

[36] Taichi Nishimura, Suzushi Tomori, Hayato Hashimoto, At-
sushi Hashimoto, Yoko Yamakata, Jun Harashima, Yoshitaka
Ushiku, and Shinsuke Mori. Visual grounding annotation of
recipe flow graph. In LREC, pages 4275–4284, 2020. 2

[37] Daniel Nyga and Michael Beetz. Everything robots always
wanted to know about housework (but were afraid to ask).
In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 243–250. IEEE, 2012. 2

[38] Dim P Papadopoulos, Youssef Tamaazousti, Ferda Ofli, In-
gmar Weber, and Antonio Torralba. How to make a pizza:
Learning a compositional layer-based gan model. In CVPR,
2019. 2

[39] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and
Vittorio Ferrari. Training object class detectors with click
supervision. In CVPR, 2017. 3

[40] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In ACL, 2002. 7

[41] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In ICCV, 2021. 8

[42] Hai X Pham, Ricardo Guerrero, Jiatong Li, and Vladimir
Pavlovic. CHEF: Cross-modal Hierarchical Embeddings for
Food Domain Retrieval. AAAI, 2021. 2, 5

[43] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu
Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:
Simulating household activities via programs. In CVPR,
pages 8494–8502, 2018. 2

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. arXiv preprint arXiv:2103.00020, 2021. 8

[45] Nils Reimers, Iryna Gurevych, Nils Reimers, Iryna
Gurevych, Nandan Thakur, Nils Reimers, Johannes Dax-
enberger, Iryna Gurevych, Nils Reimers, Iryna Gurevych,
et al. Sentence-bert: Sentence embeddings using siamese
bert-networks. In EMNLP, 2019. 3

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.
Berg, and L. Fei-Fei. ImageNet large scale visual recognition
challenge. IJCV, 2015. 3, 6

[47] Amaia Salvador, Michal Drozdzal, Xavier Giro-i Nieto, and
Adriana Romero. Inverse cooking: Recipe generation from
food images. In CVPR, 2019. 1, 2

[48] Amaia Salvador, Erhan Gundogdu, Loris Bazzani, and
Michael Donoser. Revamping cross-modal recipe retrieval
with hierarchical transformers and self-supervised learning.
In CVPR, 2021. 1, 2, 5, 6, 7

[49] Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Marin,
Ferda Ofli, Ingmar Weber, and Antonio Torralba. Learning
cross-modal embeddings for cooking recipes and food im-
ages. In CVPR, 2017. 1, 2, 4, 5, 6, 7, 8

[50] Alberto Sanfeliu and King-Sun Fu. A distance measure be-
tween attributed relational graphs for pattern recognition.
IEEE transactions on systems, man, and cybernetics, 1983.
7

[51] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, pages 815–823, 2015. 5

[52] Matthew Schultz and Thorsten Joachims. Learning a dis-
tance metric from relative comparisons. In NIPS, 2004. 5

[53] Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D
Manning, and Andrew Y Ng. Grounded compositional se-
mantics for finding and describing images with sentences.
Transactions of the Association for Computational Linguis-
tics, 2014. 5

[54] Alexander Sorokin and David Forsyth. Utility data annota-
tion with amazon mechanical turk. In Workshop at CVPR,
2008. 3

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 4,
5, 6

[56] Carl Vondrick, Donald Patterson, and Deva Ramanan. Ef-
ficiently scaling up crowdsourced video annotation. IJCV,
2013. 3

[57] Hao Wang, Doyen Sahoo, Chenghao Liu, Ee-peng Lim, and
Steven CH Hoi. Learning cross-modal embeddings with ad-
versarial networks for cooking recipes and food images. In
CVPR, 2019. 2, 5, 6, 7

[58] Hao Wang, Doyen Sahoo, Chenghao Liu, Ke Shu, Palakorn
Achananuparp, Ee-peng Lim, and CH Steven Hoi. Cross-
modal food retrieval: learning a joint embedding of food
images and recipes with semantic consistency and attention
mechanism. IEEE Transactions on Multimedia, 2021. 2, 5,
6

[59] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning
deep structure-preserving image-text embeddings. In CVPR,
2016. 5

[60] Frank F Xu, Lei Ji, Botian Shi, Junyi Du, Graham Neubig,
Yonatan Bisk, and Nan Duan. A benchmark for structured
procedural knowledge extraction from cooking videos. In
NLP Beyond Text Workshop at EMNLP, 2020. 2

[61] Yoko Yamakata, Shinsuke Mori, and John A Carroll. English
recipe flow graph corpus. In LREC, pages 5187–5194, 2020.
2

[62] Yezhou Yang, Anupam Guha, Cornelia Fermüller, and Yian-
nis Aloimonos. Manipulation action tree bank: A knowl-
edge resource for humanoids. In 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots, pages 987–992.
IEEE, 2014. 2

[63] Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis Aloi-
monos. Robot learning manipulation action plans by” watch-
ing” unconstrained videos from the world wide web. In
AAAI, 2015. 2

[64] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Push-
meet Kohli, and Joshua B Tenenbaum. Neural-symbolic
VQA: Disentangling reasoning from vision and language un-
derstanding. In NeurIPS, 2018. 2

[65] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba.
Places: A 10 million image database for scene recognition.
IEEE Trans. on PAMI, 2017. 3

[66] Bin Zhu and Chong-Wah Ngo. Cookgan: Causality based
text-to-image synthesis. In CVPR, 2020. 2

[67] Bin Zhu, Chong-Wah Ngo, Jingjing Chen, and Yanbin Hao.
R2gan: Cross-modal recipe retrieval with generative adver-
sarial network. In CVPR, 2019. 1, 2, 5, 6, 7

